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Abstract— An approach is suggested for solving the problem on finite velocity of heat propagation from
the viewpoint of the kinetic theory. Interrelation has been established between this problem and the
finite time for the distribution function to approach equilibrium.

An approximation for the collision term in the kinetic Boltzmann equation has been found capable
of providing the finite time for the equilibrium to be developed in an insulated system. By solving the
Boltzmann equation, the distribution function is calculated to a first approximation through the agency
of which the power-heat-conduction law is found, whose heat conduction equation describes the finite

propagation velocity of thermal disturbances.

NOMENCLATURE

1, distribution function of gas molecules;

foo equilibrium distribution function;

{0f /0t)y, collision term in the Boltzmann kinetic
equation;

v, molecule velocity;

m, molecule mass;

F, force acting on a molecule;

t, time;

T, point vector in coordinate space;

x,y,2, Cartesian coordinates;

Uy, Uy U, Molecule velocity projections onto
Cartesian axes;

v, 8, ¢, spherical coordinates in velocity space;

n, density of number of molecules;

k, Boltzmann constant;

T, temperature;

q, heat flux vector;

2, density;

Cp specific heat;

P, pressure;

(x), gamma-function.

1. INTRODUCTION

AMONG the challenges of the transfer phenomena
theory, there is a paradox of the infinite velocity of
propagation of disturbances which, as is known, lies
in the fact that the classical parabolic-type transfer
equations describe propagation of disturbances in such
a way that the effect of any disturbance being
localized at the initial time instant in some space area,
the next, whatever infinitesimal instant, extends over
the whole unlimited space [ 1-4]. That is, propagation
of disturbances, thermal ones in particular, occur with
an infinite velocity. The first work aimed at settling
this paradox appears to be the paper by Zel'dovich
and Raizer [4] in which the set goal is accom-
plished by adopting a power-type dependence of heat
capacity and thermal conductivity of the medium on

temperature. Now, alongside this approach, wide use
is made, primarily due to the efforts of the late A. V.
Luikov, of a hyperbolic-type equation for description
of heat conduction aimed at the same objective [1-3].
In this paper, another approach is employed based
on the transfer processes being considered from the
viewpoint of the kinetic theory. As a result, relation-
ship between the above paradox and still another in-
finity observed in the kinetic theory of gases is rather
accurately traced. By the second infinity the fact is
meant that the kinetic Boltzmann equation yields time-
exponential approach of the distribution function to its
equilibrium value { f—fo ~ exp(—A)], i.e. speaking in
general, an infinite time for equilibrium to set in. The
main achievement of the present work is an estab-
lished fact that a natural requirement for the distri-
bution function to reach its equilibrium value in a
finite time leads to transfer equations that describe
propagation of disturbances with finite velocity.
Consider the Boltzmann equation for the distri-
bution function f{r, v, #)
of 6f+ Fof _ (6]”) . (1)
st
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The known approximations of the collision term in
the kinetic Boltzmann equation {1.1), as for example,
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lead to a situation when the distribution function for a
closed system tends with time from the initial value

fto its equilibrium value f, asymptotically by the ex-
ponential law

F—fo = (J=fo)exp (— i)

ie. generally speaking, equilibrium sets in after a time
interval equal to infinity. It is known that use of the
distribution function from the Boltzmann equation
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(1.3)
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having a collision term (1.2) to describe the transfer
processes leads to the transfer equations yielding an
infinite velocity propagation of disturbances [5, 6].

2. FINITE TIME OF EQUILIBRIUM SETTING

Let us require for the distribution function to attain
its equilibrium value in a finite time, which is physically
more justifiable. To achieve this aim, expression (1.2)
may be generalized by the following nonlinear approxi-
mation of the collision term

CZ) _ I

isk=0
ot T

2.1
ie. we assume that at least at small deviations from
equilibrium, the collision term is proportional to the
deviation whose power is less than unity. Then the
approach of the distribution function to the equilibrium
value is governed by
o _ SR
it T
and yields the law of this process as

2.2)

QZk 1/2k
e fo = (f—foll 1 — 2k —5——t . 2.3
f=fo=(f fn}[ T=fo" ] 2.3)
Thus, it follows from (2.3) that in a finite time interval
— (‘f —fo)z"f
t = Ty = Ty T
2kfs

the distribution function takes exactly an equilibrium
value being kept thereafter. In the domain of the real
numbers, the function (2.3} is determined for the values
of the argument ¢ < 7o. At a point t = 1, it turns to
zero and by definition keeps this value at t > 1. Note,
that with restrictions imposed on k in (2.1), the first
derivative function f—f; at the point ¢t = 75 turns to
zero as well.

If 7, is a time interval during which deviation of the
function from an equilibrium value decreases e times
relative to the initial one, then

Te
T b—exp(=2k)
In the limit at k — 0, equation (2.3} passes into {1.3),
while 19 — oC.

2.4)
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3. POWER LAW OF HEAT CONDUCTION

Now we shall show the effect which the form of the
collision term (2.1) has in the studies of the transfer
processes. Consider heat conduction in a gas whose
temperature Tis not a very strongly varying function
of coordinates, so that for zero approximation we may
take a local function of the Maxwellian distribution
[5, 6], as is usually done

m 2 mv?
)= n| = —— 3.1
folr,v,0) ”(m’r) eXP( 2kT> (3.0
Then, in the next approximation the distribution func-
tion will be determined by solving the kinetic Boltzmann
equation (1.1) with the collision term (2.1) [5, 6]
G U
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To simplify subsequent calculations, we assumed a
temperature distribution in a gas to be independent of
time and the molecules to be unaffected by the external
forces F = 0.

From equation (3.2) we have

T af() 14 2k{(1—2k)
I=fh- l:/?" 5;:'

T afo 8T 1+ 2k/(t - 2k)
=fo—{may =
¢ éT or
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=Jo—T Tvl@x{ T 5

m \¥? my?
X n (m) exp (» ﬁ) (3.3)

The distribution function being known, we can cal-
culate the heat flux, which by definition [5, 6] is equal to

jo ()

If temperature is distributed in a fluid in such a way
that it is a function of only one coordinate, say x,
then from equation (3.4): ¢, = ¢, =0

(3.4)

_ (6T6T)’0T ,__k .
="\ o T 1=k @
TI/(!’Zk)mn m 32 ey

Aa= (ZRkT) jd%lvg“ e

va 5 {1 -2k 1’7102 36
72 P\ Twr) B9

To obtain a generalized law, consider an additional
number of particular cases:

(@ T=Txy), k=173,
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g = (3.7)
(b) T = T(x), k= 1/4,
_ 271'2nT”2k5/2 18T |éT
4= m3? | ox,|ox’
4y = gx =0, (3.8)
() T =Tx,y), k= 2/5,
0T\? OT\*? 0T
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Generalizing formulas (3.5)-(3.9), we write:
q= —Ag[(VIP*TVT, ig=ixg(T.p..)>0. (3.10)
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Thus, the heat conduction law is the power law (3.10),
and the heat-conduction equation will have the form

oT .
P = —~div {Ax[(VT)?]'VT}. (3.19)
Or in index notation
oT o 8T 8TN 8T
Cprm = —— Ayl ——— | 3.12
P ot 5x,{ " an 8xk> 6}@} ( )
ciimmation ig¢ carried ouf from 1 to 3 over reneating
summation 18 carrieg out from I (o 3 over repeaung
indices,

In the presence of heat sources, equation (3.11) is
written as:

pc,,%:; = div {Ag[(VT]VT} +Q

where @ is the quantity of heat absorbed or released
by these sources per unit time in a body unit volume.

In a one-dimensional case, the temperature being a
function of only one space coordinate x, equation
(3.12) takes on the form

oT_of, TferyYer
Pl o T ax |77 [\ox x|

If a new thermal conductivity coefficient, Ay, can be
regarded as a constant value, equation (3.12) gets a
most simple form:

aT @ f[feT\Ter
a  "axl\ex ) | o {

Here, a new term for thermal diffusivity,

(3.13)

(3.14)

Axy
Kg=—,

ACy
is introduced.

It is the above equation (3.14) to whose solution,
provided xy and n are constant values, that the re-
mainder portion of this paper will be devoted. By
solving specific problems, illustration will be provided
for the existence of the finite velocity of propagation
of thermal disturbances (see alsa [7]).

4. PROPAGATION OF HEAT FROM A PLANE
INSTANTANEOUS SOURCE

At the initial time instant, ¢ = 0, in the plane x =0
a quantity of heat released related to unit area, Q. The
remaining space has a constant temperature, T = T,
Find spatial distribution of temperature at subsequent
time instants.

The problem stated is described by equation (3.14)
subject to the initial conditions

[ =0 {T=oo at x=0

T=T at x#0 @)

the total quantity of heat in the space remaining con-
stant

J pe{T—To)dx = @ = const

or

j (T—Ty)dx = A = const 4.2)
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Solution of equation (3.14) under initial conditions
(4.1} is of the following form
_A[+ D] b2t
2R+ ) Har
X [{(f%)(l%~ D2+ 1)_(62)(14’ 121+ l)} 1/2](Zl+ it (43)

T-T

where
&= xfat™, a=g{PETVLCID = 120214+ 1),

o is an arbitrary constant.

Equation (4.3) gives spatial distribution of tempera-
ture bounded at any time instant by points { = +&o.
Outside these points the temperature is equal to Tq.
Thus, the boundary of the region occupied at the
given time instant by a thermal disturbance is de-
termined from equality &, = + &, and with time this
region extends according to the law

Xop = HEoal™ = + PO (44)

It is the velocity with which the boundary of the
region, occupied by a thermal disturbance, moves
which is the velocity of propagation of a thermal dis-
turbance. It is defined by the derivative of x,,/0t and
is equal to

%rp &a )
= Fv— (1‘;’41}1(24"2?). 45
at 200+ 1) (4.3)

H-

Up=

At t— o0, we get vr—0.

Note that at points & = + &, the first derivative of
temperature with respect to the coordinate, 0T/0x,
turns to zero.

Qualitative representation of the temperature distri-
bution at some time instant is shown in Fig. 1. The
dashed line gives temperature distribution determined
by the linear heat-conduction equation.

X

-XO

F1G. 1. Qualitative representation of the spatial temperature
distribution from an instantaneous point source at time
instant ¢ on the basis of the nonlinear heat-conduction
law (solid line) and the linear Fourier law (dashed line).
Points xo = +at™&e define the boundary of the region
occupied by a thermal disturbance at the given time instant.

The value of the arbitrary constant &, is defined from
the condition that the total quantity of heat in space
is constant

j (T=Ty)dx = f (T—To)dx = A
e - &o
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and turns to be equal to

0= (1+ U(l +41}/(2+4£)2I;’2{2I+ 2)(2[+ 1)(1—2%)/2(2“ 1}
1 U+1 1/(2E+ 1)
r<~+m~ +2>
-2 20 2042 '

1 2i+1
r<2~+z)r(2i+2)

At small values of the exponent {({— 0), we obtain

<

(4.6)

kn—k, a—(kg)'?—x'?

m—1/2, & 4.7)

X
{xct)V/?
and formula(4.3) which gives spatial temperature distri-
bution acquires the form:

A x 2)1727 11
== | {2 ) | | 00

Atl—0
A x?
Bm(T—Tp) = ——exp| —— ),
lim (T—To) (4xm)‘/lexp< 4xt)

which is consistent with the linear heat-conduction
theory [1, 2].

With [ « 1 the boundary of the region occupied by a
thermal disturbance is determined by:

¢ 172
Xep = + (T) tl/Z‘

And the propagation velocity of a thermal dis-
turbance, by

1j2
oy = 5xrp =+ (%) -z

This expression makes it evident that the velocity
of propagation of a thermal disturbance vanishes with
time in proportion to t~ "2 Its infinite value at the
initial time instant is due to the statement of the
problem.

Expression (4.10) allows estimation of the possible
values of the exponent ! which determines deviation
from linearity in the heat conduction law. Thermal
diffusivity x is of the order of (10”*-10"")m?/s de-
pending on the type of the medium. According to the
available data, the velocity of propagation of a thermal
disturbance is of the order of 10°m/s [1]. Once this
velocity is assumed to correspond to the time instant
t = 10s at the onset of a disturbance, then | should
be of the order

(4.9)

(4.10)

I~107°—10"12, @.11)

This value is very small as compared to unity, ie.
deviation from the linearity in the heat conduction law
is so small that for its experimental determination some
special methods are required. This small value of /
allows approximate formulae {4.7}-{4.10) to be auto-
matically employed for calculations.

Note that solution (4.3) may be interpreted other-
wise. Let the temperature distribution be prescribed
by formulae (4.3) at the initial time instant t = t, be-
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tween the points xp= +&atd> ¥ 1. At points
—Xg 2 X 2 Xo the temperature Is constant and equal
to Ty. Then, expression (4.3) gives temperature distri-
bution at any subsequent time instant r > t,. The
initial temperature distribution is spread over a space
with a finite velocity of boundary motion of the
region occupied by a thermal disturbance. This solution
is free of infinities at the initial time instant.

It is also valid for the case when one half-space (for
example, x < 0) is thermally insulated, and a thermal
disturbance in the plane x = 0 propagates into the
other half-space {for example, x > 0), since

(ET/&X);::Q =0,

5. HEAT PROPAGATION FROM A PLANE WITH
INSTANTANEOUSLY CHANGED TEMPERATURE
Let at the initial time instant, ¢ = 0, the plane tem-
perature, x = 0, assume the value T}, afterwards being
kept indefinitely long. The RHS half-space (x > 0) has
the temperature To. It is in this half-space that heat
starts propagating. Find a temperature distribution in
it at subsequent time instants.
This process is also governed by equation (3.14)
under the following initial and boundary conditions:

a JT=T7 at x=0
Atr=0: {Tz T, at x>0 {5.1)
Atr>0: T=T, at x=0. (5.2)

The solution of equation (3.14) under the initial and
boundary conditions {5.1) and (5.2) is as follows:

TE-1 [ ! e
L~T, [ 2QI+1)(i+1)
XJ [(€8—n*'"?]"dy (5.3)
0
where
X 1

= = = g lj20+ gl + 1)
S=am Mgy eSO
0=|T~T5f

1 3
A=+~
(2!+2>
1 1
'=+1T{=
<2z+ ) (2
Formula (5.3) yields solution to the stated problem
within 0 € & < &. At & = &, T'= T;. This point is the

right boundary of the region occupied by a thermal
disturbance

g R

201+ )i+ )T
)[( +g)(+)} 54

xrp — éoatm . éoatl/2(1+l).

(5.5)

The velocity of propagation of the thermal dis-
turbance front is
3%, Eou
v = =
ot X+
At t— o0, 17— 0. At a point & = &, the derivative
of (0T/dx) = 0.

t-(21+ 1{2i+2)

(5.6)
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FiG. 2. Qualitative representation of the spatial temperature

distribution at an instantaneous temperature change of the

left half-space at time instant ¢ on the basis of the nonlinear

heat-conduction law (solid line) and the linear Fourier law

(dashed line). The point xo = at™&o determines the boundary
of the region occupied by a thermal disturbance.

Qualitative representation of a temperature distri-
bution at some time instant with T; # T; is given in
Fig. 2. The dashed lines show temperature distribution
obtained on the basis of the linear theory.

At small /(] — 0) we have:

x
12 _
Kky—K, a—k'% m—1/2, é—_’(xt)m

and solution (5.3) becomes

In this case too, at ! « 1, the propagation velocity
of thermal disturbances is equal to

6x,,, 12 1
ot 21 12

just as in the first problem.

Note that the linear heat-conduction theory involves
the concept of the isotherm velocity, which is also pro-
portional to ¢t~ *2, It can be said that motion of the
boundary of a region occupied by a thermal disturbance
is motion of an isotherm with temperature of the
medium surrounding this region.

Note in conclusion, that using the power form of the
collision term in the Boltzmann equation, one may
obtain a power rheological law as well as a power
law of the combined heat and impulse transfer.

(5.8)

Ur=
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PROPAGATION DE LA CHALEUR AVEC VITESSE FINIE
DU POINT DE VUE DE LA THEORIE CINETIQUE

Resumé—On propose une approche permettant de résoudre le probléme de la propagation de la chaleur
avec vitesse finie du point de vue de la théorie cinétique. Un rapprochement a été effectué entre ce
probléme et celui d’un temps fini mis par la fonction de distribution pour atteindre I'équilibre.

Une approximation du terme de collision dans I’équation cinétique de Boltzmann s’est avérée capable
de fournir le temps fini pour que s’établisse I'équilibre dans un systéme isolé. Par résolution de ’équation
de Boltzmann, la fonction de distribution est calculée en premiére approximation et conduit a la loi
puissance de la conduction thermique, 'équation de la chaleur correspondante décrit la vitesse de

propagation finie des perturbations thermiques.

EINE BETRACHTUNG DER ENDLICHEN GESCHWINDIGKEIT
DER WARMEAUSBREITUNG UNTER DEM GESICHTSPUNKT DER
KINETISCHEN GASTHEORIE

Zusammenfassung—Es wird vorgeschlagen, das Problem der endlichen Geschwindigkeit der Wirme-
ausbreitung mit Hilfe der kinetischen Gastheorie zu 16sen. Es wird ein Zusammenhang aufgezeigt zwischen
diesem Problem und demjenigen der endlichen Zeit zum Erreichen des Gleichgewichtes fiir die
Verteilungsfunktion.

Mit Hilfe einer Niherung fiir den Kollisionstherm in der Boltzmann-Gleichung konnte die endliche
Zeit bis zur Einstellung des Gleichgewichtes in einem isolierten System angegeben werden. Die Lésung
der Boltzmann-Gleichung ergibt eine erste Niherung fiir die Verteilungsfunktion, aus der ein Potenzgesetz
fir die Wirmeleitung aufgestellt werden karn; diese w *-— ‘eitgleichung beschreibt die endliche

Ausbreitungsgeschwindigkeit thermiscner StSrungen.
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KOHEYHAA CKOPOCTB PACIIPOCTPAHEHHA TEIUIA C TOYKW 3PEHUA
KMHETUYECKOHN TEOPUH

Annotammns — [Ipennaraercsa NOAX0nA K PELLEAHIO BONPOCa O KOHEYHOH CKOPOCTH PACIIPOCTPAHEHHS
TelUla ¢ MO3HUHN KHHETHYECKOH TEOpHH. YCTaHOBJIEHA B3aHMOCBA3b MEXIY 3THM BOIPOCOM M
KOHEYHBIM BpEeMEHEM NPUOGIMKEHHS (PYHKIUM PACIIpeRENeHNAs K PABHOBECHOMY 3HAYEHHUIO.
HalizeHa annmpoKCHMAaUHA CTOJKHOBHUTENBHOTO 4IEHA KHHETHYECKOTrO ypaBHeHHA BosbiiMaHa,
obecneunBarouliasi KOHEYHOE BPEMsi YCTAHOBJIEHMS DaBHOBECHS B M30JIHPOBaHHOIN cucreme. U3
pewlenus ypaeHeHHsa Bonbumana B nepBom NpuOiMkKeHHH BbIMHCIIeHA (GYHKLMSA pacnpeneieHus -1
¢ ee MOMOILLIO TOY4eH CTENEHHOI 3aKOH TEIUIONPOBOAHOCTH, NPHBOIALUMH K YPABHEHHIO TEMIO-
MPOBOOHOCTH, KOTOPOE ONKCHIBAET MPOLIECC PACIPOCTPAHEHUS TEMIOBBIX BO3MYIUEHHH ¢ KOHEYHON
CKOPOCTBIO,



