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THEORY 

Alwtract-An approach is suggested for solving the problem on finite velocity of heat propagation from 
the viewpoint of the kinetic theory. Interrelation has been established between this problem and the 
finite time for the distribution function to approach equilibrium. 

An approximation for the co&on term in the kinetic Boltzmann equation has been found capable 
of providing the finite time for the eq~librium to be developed in an insulated system. By solving the 
Boltzmann equation, the distribution function is calculated to a first approximation through the agency 
of which the power-heat-conduction Iaw is found, whose heat conduction equation describes the finite 

propagation velocity of thermal disturbances. 

NOM~NCLA~RE 

dist~bution function of gas molecules; 
equilibrium distribution function; 
collision term in the Boltzmann kinetic 
equation; 
molecule velocity; 
molecule mass; 
force acting on a molecule; 
time; 
point vector in coordinate space; 
Cartesian coordinates; 
molecule velocity projections onto 
Cartesian axes; 
spherical coordinates in velocity space; 
density of number of molecules; 
Boltzmann constant; 
temperature; 
heat flux vector; 
density; 
specific heat; 
pressure; 
gamma-function. 

1. INTRODUCTION 

AMONG the challenges of the transfer phenomena 
theory, there is a paradox of the i&mite velocity of 
propagation of disturbances which, as is known, lies 
in the fact that the classical parabolic-type transfer 
equations describe propagation of disturbances in such 
a way that the effect of any disturbance being 
localized at the initial time instant in some space area, 
the next, whatever infinitesimal instant, extends over 
the whole unlimited space [l-4]. That is, propagation 
of disturbances, thermal ones in particular, occur with 
an infinite velocity. The first work aimed at settling 
this paradox appears to be the paper by Zel’dovich 
and Raizer [4] in which the set goal is accom- 
plished by adopting a power-type dependence of heat 
capacity and thermal ~ondu~ivity of the medium on 

temperature. Now, alongside this approach, wide use 
is made, primarily due to the efforts of the late A. V. 
Luikov, of a hyperbolic-type equation for description 
of heat conduction aimed at the same objective [l-3]. 

In this paper, another approach is employed based 
on the transfer processes being considered from the 
viewpoint of the kinetic theory. As a result, relation- 
ship between the above paradox and still another in- 
finity observed in the kinetic theory of gases is rather 
accurately traced. By the second infinity the fact is 
meant that the kinetic Boltzmann equation yields time- 
exponential approach of the distribution function to its 
equilibrium value [f-f0 N exp (- dt)], i.e. speaking in 
general, an infinite time for equilib~um to set in. The 
main achievement of the present work is an estab- 
lished fact that a natural requirement for the distri- 
bution function to reach its equilibrium value in a 
finite time leads to transfer equations that describe 
propagation of disturbances with finite velocity. 

Consider the Bolt~ann equation for the distri- 
bution function~(r, v, t) 

(1.1) 

The known approximations of the collision term in 
the kinetic Bolt~~n equation (Ll), as for example, 

f?f 0 f f -So) -- z,,= z 
(1.2) 

lead to a situation when the distribution function for a 
closed system tends with time from the initial value 
fto its equilibrium valuefe asymptotically by the ex- 
ponential law 

f--f0 = (f--fobw - t 

( 1 

(1.3) 

i.e. generally speaking, equilibrium sets in after a time 
interval equal to infinity. It is known that use of the 
dist~bution function from the Boltzmann equation 

621 
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having a collision term (1.2) to describe the transfer To simplify subsequent calculations, we assumed a 
processes leads to the transfer equations yielding an temperature distribution in a gas to be independent of 
infinite velocity propagation of disturbances [S, 61. time and the molecules to be unaffected by the external 

forces F = 0. 
2. FINITE TIME OF EQUILIBRI~~M SETTING 

Let us require for the distribution function to attain 
its equilibrium value in a finite time, which is physically 
more justifiable. To achieve this aim, expression (1.2) 
may be generalized by the following nonlinear approxi- 
mation of the collision term 

i.e. we assume that at least at small deviations from 
equilibrium, the collision term is proportional to the 
deviation whose power is less than unity. Then the 
approach of thedistr~bution function to the equiiib~um The djstribution function being known, we can cal- 

value is governed by culate the heat flux, which by definition [.5,6] is equal to 

;if _,P~f-fo,' 2k 
at (2.2) 

z (3.4) 

and yields the law of this process as 
If temperature is distributed in a fluid in such a way 

that it is a function of only one coordinate, say x, 
then from equation (3.4): 4) = qZ = 0 

Thus, it follows from (2.3) that in a finite time interval 

( f-fo)2kT 
f=70=2/if02L- 

the distribution function takes exactly an equilib~~ 
value being kept thereafter. In the domain of the real 
numbers, the function (2.3) is determined for the values 
of the argument t < 70. At a point f = ro, it turns to 
zero and by definition keeps this value at r > to. Note, 
that with restrictions imposed on k in (2.1), the first 
derivative functionJ-f. at the point t = 70 turns to 

To obtain a generalized law, consider an additionaf 

zero as well. 
number of particular cases: 

If 5, is a time interval during which deviation of the (a) T = Thy), li = l/3. 
function from an equilibrium value decreases e times 
relative to the initial one, then 

Te 
zo = lzm (2.4) 

In the limit at k --+ 0, equation (2.3) passes into (1.3), 
while to -+ x qr = 0 (3.7) 

3. POWER LAW OF HEAT CONDUCTION (b) T = T(x), k = l/4, 

Now we shall show the effect which the form of the 
collision term (2.1) has in the studies of the transfer 

‘lx= - 27-------- 

processes. Consider heat conduction in a gas whose 
temperature Tis not a very strongly varying function q, = Yx = 0, (3.8) 

of coordinates, so that for zero approximation we may (4 T = ‘Qx, Y), k = 215, 

take a local function of the Maxwellian distribution 
[S, 61, as is usually done 

fo(r,v,r)= ~(~~~exp~-~). (3.1) 

Then, in the next approximation the distribution func- 
tion will bedetermined by solving the kinetic Boltzmann (3.9) 
equation (1.1) with the collision term (2.1) [S, 6) 

Generalizing formulas (3.5)-(3.9), we write: 

From equation (3.2) we have 

q = -d‘y[(v7ypr, /I* = I&T, p...) > 0. (3.10) 
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Thus,the heat condu~ion law is the power law (3X9, 
and the heat-conduction equation will have the form 

pcPaZT = -div (nH[(VT)2]‘VT). (3.11) 

Or in index notation 

summation is carried out from 1 to 3 over repeating 
indices, 

In the presence of heat sources, equation (3.11) is 
written as : 

where Q is the quantity of heat absorbed or released 
by these sources per unit time in a body unit volume. 

In a one-dimensional case, the temperature being a 
function of only one space coordinate x, equation 
(3.12) takes on the form 

If a new thermal conductivity coefficient, IH, can be 
regarded as a constant value, equation (3.12) gets a 
most simple form : 

Here, a new term for thermal diffusivity, 

is introduced. 
It is the above equation (3.14) to whose solution, 

provided h^y and n are constant values, that the re- 
mainder portion of this paper will be devoted. By 
solving specific problems, illustration will be provided 
for the existence of the finite velocity of propagation 
of thermal disturbances (see also [7]). 

4. PROPAGATION OF HEAT FROM A PLANE 
INSTANTANEOUS SOURCE 

At the initial time instant, t = 0, in the plane x = 0 
a quantity of heat released related to unit area, Q. The 
remaining space has a constant temperature, T = T,. 
Find spatial distribution of temperature at subsequent 
time instants. 

The problem stated is described by equation (3.14) 
subject to the initial conditions 

t = 0: 
T=co at x=0 
T=To at x#O (4.1) 

the total quantity of heat in the space remaining con- 
stant 

i‘ 

m 
pc,(T- TO)dx = Q = const 

-.XJ 
or 

s 

m 
(T- T,)dx = A = const (4.2) 

-m 

Solution of equation (3.14) under initial conditions 
(4.1) is of the following form 

T _ To =f A[l/(I+ 1)y2’+ lY21 
*‘/2’(*1+ pa;” 

x [{(g~)(l+‘)/(Z’+‘)_(5 ) 2 (I+ lM2l+ 1)}1/2](21+ 1)/I (4.3) 

where 

5 = x/am, a = K$~~(~‘+~)A”/‘~+‘), m = l/2(21$ l), 

&, is an arbitrary constant. 
Equation (4.3) gives spatial distribution of tempera- 

ture bounded at any time instant by points 5 = +&, 
Outside these points the temperature is equal to To. 
Thus, the boundary of the region occupied at the 
given time instant by a thermal disturbance is de- 
termined from equality errr = + {,, and with time this 
region extends according to the law 

x,, = +&ar” = f &$zf’~2(2’+ 1). (4.4) 

It is the velocity with which the boundary of the 
region, occupied by a thermal disturbance, moves 
which is the velocity of propagation of a thermal dis- 
turbance. It is defined by the derivative of &+,/at and 
is equal to 

At t--t co, we get UT+0. 

Note that at points 5 = &to the first derivative of 
temperature with respect to the coordinate, aTlax, 
turns to zero. 

Qualitative representation of the temperature distri- 
bution at some time instant is shown in Fig. 1. The 
dashed line gives temperature distribution determined 
by the linear heat-conduction equation. 

t 
T-To 

FIG. 1. Qualitative representation of the spatial temperature 
distribution from an instantaneous point source at time 
instant t on the basis of the nonlinear heat-conduction 
law (solid line) and the linear Fourier law (dashed line). 
Points x0 = +at”<o define the boundary of the region 
occupied by a thermal disturbance at the given time instant. 

Thevalue of the arbitrary constant &, is defined from 
the condition that the total quantity of heat in space 
is constant 

(T-TO)dx = 
s 

” (T-T,)dx = A 
- co 
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and turns to be equal to 

At small values of the exponent I(1-+0), we obtain 

KM-+& a+(IcH)‘i2--tK”2, 

and formula (4.3) which gives spatial temperature distri- 
bution acquires the form: 

T-- TJ - ~4nKt)l/z - -"i(l-21(&~)ij2~". (4.8) 

At I-+0 

which is consistent with the linear heat-conduction 
theory [I, 21. 

With 1 cc 1 the boundary of the region occupied by a 
thermal disturban~ is determined by: 

And the propagation velocity of a thermal dis- 
turbance, by 

ax 
Q.=-z!=-+ ‘c 0 

lj2 

at 

t- 112 

-21 . 
(4.10) 

This expression makes it evident that the velocity 
of propagation of a thermal disturbance vanishes with 
time in proportion to t-‘!*. Its infinite value at the 
initial time instant is due to the statement of the 
problem. 

Expression (4.10) aflows estimation of the possibie 
values of the exponent I which determines deviation 
from linearity in the heat conduction law. Thermal 
diffusivity K is of the order of (10-4-10-7)m2/s de- 
pending on the type of the medium. According to the 
available data, the velocity of propagation of a thermal 
disturbance is of the order of lO’m/s [l]. Once this 
velocity is assumed to correspond to the time instant 
t = 10s at the onset of a disturbance, then I should 
be of the order 

f N 10-q- lo-‘2. (4.11) 

This value is very small as compared to unity, i.e. 
deviation from the linearity in the heat conduction law 
is so small that for its experimental determination some 
special methods are required. This small value of 1 
allows approximate formulae (4.7~(4.10) to be auto- 
matically employed for caiculations. 

Note that solution (4.3) may be interpreted other- 
wise. Let the temperature distribution be prescribed 
by formulae (4.3) at the initial time instant t = to be- 

tween the points x0 = &&,at~i2’2’C’J. At points 
--x0 2 x 2 x0 the temperature is constant and equal 
to Te. Then, expression (4.3) gives temperature distri- 
bution at any subsequent time instant t > to. The 
initial temperature distribution is spread over a space 
with a finite velocity of boundary motion of the 
region occupied by a thermal disturbance. This solution 
is free of infinities at the initial time instant. 

It is also valid for the case when one half-space (for 
example, x < 0) is thermally insulated, and a thermal 
disturbance in the plane x = 0 propagates into the 
other half-space (for example, x > 0), since 

(aT/%),=o = 0. 

5. HEAT PROPAGATION FROM A PLANE WITH 

This process is also governed by equation (3.14) 

INSTANTANEOUSLY CHANGED TEMPERATURE 

Let at the initial time instant, t = 0, the plane tem- 
peraiure, x = 0, assume the value T,, afterwards being 

under the following initial and boundary conditions : 

kept indefinitely long. The RHS half-space (x > 0) has 
the tem~rature T2. It is in this half-space that heat 
starts propagating. Find a temperature distribution in 
it at subsequent time instants. 

Att=O: 
T=Tl at x=0 
T=Tz at x>O (5.1) 

At r > 0: T = T1 at x = 0. (5.2) 

The solution of equation (3.14) under the initial and 
boundary conditions (5.1) and (5.2) is as follows: 

-q2)1’2]‘“dy (5.3) 

2r ',2 
(3 2! [z(2~+:)(1+1))1'2'. 

~~+l~tl=~(~+l)~(~) 

(5.4) 

Formula (5.3) yields solution to the stated problem 
within 0 f 5 ,< &,. At r = to, T = T2. This point is the 
right boundary of the region occupied by a thermal 
disturbance 

x ,11 = ~Outm = ~oar’/2(r+r? (5.5) 

The velocity of propagation of the thermal dis- 
turbance front is 

a&p foa t-‘2’+‘>/‘2’+2’ 

VT = at = 2(Zf 1) (5.6) 

At t--r co, vr+O. At a point 5 = 40, the derivative 
of (aT/%X) = 0. 
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In this case too, at I cc 1, the propagation velocity 

of thermal disturbances is equal to 

FIG. 2. Qualitative representation of the spatial temperature 
distribution at an instantaneous temperature change of the 
left half-space at time instant t on the basis of the nonlinear 
heat-conduction law (solid line) and the linear Fourier law 
(dashed line). The point x0 = at”to determines the boundary 

of the region occupied by a thermal disturbance. 

Qualitative representation of a temperature distri- 
bution at some time instant with Tz # Tl is given in 

Fig. 2. The dashed lines show temperature distribution 
obtained on the basis of the linear theory. 

At small 1(1+0) we have: 

KH-K, a-+K112, m-1/2, l-*X 
(ict)“2 

and solution (5.3) becomes 

T(t)-T, 1 r ___=__ 
s T2- Tl (~)l’~ ,J 

[(l -21(n/2)2)1’2]“1dq (5.7) 

and 

l im  T(t)- TI 1 ’ -=- 
s [+,, T2 -Tl (7~)“~ r 

ev(-r12/4)4 = erf 

according to the linear theory [l, 21. 

aXlp K 1/Z 1 

UT=at= 21 0 t”2 (5.8) 

just as in the first problem. 
Note that the linear heat-conduction theory involves 

the concept of the isotherm velocity, which is also pro- 
portional to t-1!2. It can be said that motion of the 

boundary of a region occupied by a thermal disturbance 
is motion of an isotherm with temperature of the 
medium surrounding this region. 

Note in conclusion, that using the power form of the 

collision term in the Boltzmann equation, one may 
obtain a power rheological law as well as a power 
law of the combined heat and impulse transfer. 
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PROPAGATION DE LA CHALEUR AVEC VITESSE FINIE 
DU POINT DE VUE DE LA THEORIE CINETIQUE 

R&urn&-On propose une approche permettant de rtsoudre le probleme de Ia propagation de la chaleur 
avec vitesse time du point de vue de la thtorie cinetique. Unrapprochement a et& effectut entre ce 
probleme et celui dun temps fini mis par la fonction de distribution pour atteindre I’tquilibre. 

Une approximation du terme de collision dans l’tquation cinetique de Boltzmann s’est aver&e capable 
de fournir le temps fini pour que s’etablisse l’tquilibre dans un systtme isole. Par resolution de l’tquation 
de Boltzmann, la fonction de distribution est calculee en premiere approximation et conduit a la loi 
puissance de la conduction thermique, l’equation de la chaleur correspondante d&it la vitesse de 

propagation finie des perturbations thermiques. 

EINE BETRACHTUNG DER ENDLICHEN GESCHWINDIGKEIT 
DER WARMEAUSBREITUNG UNTER DEM GESICHTSPUNKT DER 

KINETISCHEN GASTHEORIE 

Zuaammenfaaaung-Es wird vorgeschlagen, das Problem der endlichen Geschwindigkeit der Warme- 
ausbreitungmit Hilfeder kinetischen Gastheorie zu l&en. Es wird ein Zusammenhang aufgezeigt zwischen 
diesem Problem und demjenigen der endlichen Zeit zum Erreichen des Gleichgewichtes fiir die 
Verteilungsfunktion. 

Mit Hilfe einer Naherung ftir den Kollisionstherm in der Boltzmann-Gleichung konnte die endliche 
Zeit bis zur Einstellung des Gleichgewichtes in einem isolierten System angegeben werden. Die Losung 
der Boltzmann-Gleichung ergibt eine erste Niiherung ftir die Verteilungsfunktion, aus der ein Potenzgesetz 
fur die Wiirmeleitung aufgestellt werden kar 7; diese ‘Y;‘- - ‘eitgleichung beschreibt die endliche 

Ausbreitungsgeschwindigkeit thernuscner Storungen. 
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KOHEYHAII CKOPOCTb PACIIPOCTPAHEHLUI TEIUIA C TOYKM 3PEHW-l 
KkiHETtfYECKOfi TEOPMll 

.imoTa~~--_penflaraeTcx noAxon K peureamo Bonpoca 0 K~H~'~H~~~cKo~ocT~ pacnpocTpaHemifl 
Tema C nO3kiUHii KWHeTA'ieCKOit TeOpHH. YCTaHOBJIeHa B3aEiMOCBR3b MemAy 3THM BOnpOCOM H 
KOHe'IHbIM BpeMeHeM npw6nwmeHwn +yHKUAH PaCnpeAeJIeHlis KpaBHOBeCHOMy 3Ha'IeHmO. 

HatiAeHa annpOKCHMaUml CTOJIKHOBHTeJIbHOrO WeHa KWHeTH'ieCKOrO ypaBHeHEiR 60JIbUMaHa, 
06eCne'iHBaK)lUaR KOHQ'IHOC BpeMn yCTaHOBJIeHml paBHOBeCHR B H30JIHpOBaHHOk CUCTeMe. M3 
perrremia ypaBHemin ISonbUMaHa B nepf3oM npn6nmKeHuw BbIwicneHa @y~~Unfl pacnpeneneHtia.A 
C e4Z nOMOIUbKl IIOJIy'IeH CTeneHHOir 3aKOH TenJIOnpOBO~HOCTH,npHBOANLWi~ K ypaBHeHmO TenJlO- 
npOBOfIHOCTEi, KOTOpOe OnllCblBaeT npOUeCC paCnpOCTpaHeHHfl TenJIOBbIX BO3MyIUeHUZi C KOHWHOii 

CKOpOCTbIO. 


